My experience with administrative data

Catherine Stewart & Ruth Dundas
MRC/CSO Social and Public Health Sciences Unit
9 February 2017

Overview

- Sourcing data
- Data application process
- Data linkage & transfer
- Data cleaning
- Benefits of using linked data
- Final reflections
Example

The importance of secondary school education in the patterning of health outcomes in Scotland

Background

- Broad aim: Investigate how various health outcomes in Scotland are patterned according to educational status.

- Particular focus on educational attainment at school-leaving.

- Several ways in which education may influence health:
 - Better education can lead to better job opportunities and income.
 - Better education can improve knowledge of how to live a healthy life and have a better understanding of how certain behaviours can affect health.
Sourcing Data

- Health outcome data:
 - Hospitalisation and mortality records (ISD).

- Education data (??):
 - Scottish Longitudinal Study (SLS)
 - Obtain education data directly from Scottish Government

- Obtaining data from Scottish Government:
 - As with SLS, we would also only be able to access education data as far back as 2007 (due to data quality issues)
 - Could we gain access to pupil names to improve linkage to health data (SQA)?

Data Application Process (~2012/13)

1. Define specific research questions
 - Cohort and hence health outcomes restricted by availability of education data back to 2007 only.
 - Focus on
 - Mental health outcomes e.g. suicide/attempted suicide and psychiatric hospital admission as well as
 - Alcohol and drug-related deaths and hospitalisations
 - Accidents and assaults

2. Data applications
 - Three different data applications had to be made to the three different agencies providing data:
 - Privacy Advisory Committee (PAC) application to ISD to use health data and request linkage of previously unlinked datasets.
 - Data access application to Education Analytical Services (EAS) at the Scottish Government to access education data.
 - Application to Scottish Qualifications Authority (SQA) to access names of pupils for education and health data linkage.
Data Requested

- **Health data (ISD)**
 - General acute inpatient & day case discharges *(SMR01)*
 - Psychiatric admissions *(SMR04)*
 - Maternity inpatient & day case discharges for cohort member & any offspring of female cohort members *(SMR02)*
 - Deaths

- **Education data (Scot Gov)**
 - School attainment data for all school leavers
 - Pupil Census data (sociodemographic info, learning support needs)
 - Attendance, absence and exclusion data
 - School-leaving destination information (e.g. higher education etc)
 - School-level deprivation information (SIMD)

- **Other (SQA)**
 - Identifiers (including Scottish Candidate number, forename & surname, gender and DOB)

Variable Selection

- Applications to both ISD and Scot Gov required detailed lists of all variables that required for the research.

- Any variables requested at a later date may (or may not) have to go through another formal application process and be signed-off separately.
Data Extraction, Linkage & Transfer Process

1a – Transfer SCN and restricted identifiers for school leavers from 2006/07 onwards.

1b – Transfer SCN and full identifiers on school leavers.

2 – Generate ID-SCN-CHI key.

4 – Transfer ID and education variables.

3 – Transfer SCN and ID.

5 – Transfer ID and health variables.

6 – Create anonymous health-education analysis file.

Information flow required to create analysis file

Diagram adapted from Pell J. & Wood R.

Problems with the data (Received June 2013)

Major problems

- Health and education data did not appear to be referring to the same person when cross-checking on variables like gender and year of birth.

- ISD had sent an old version of the anonymised ID to ScotXed for them to attach to the education data.

<table>
<thead>
<tr>
<th>unique_id</th>
<th>YearOfBirth</th>
<th>yobsmr02</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1995</td>
<td>1993</td>
</tr>
<tr>
<td>2</td>
<td>1991</td>
<td>1995</td>
</tr>
<tr>
<td>3</td>
<td>1992</td>
<td>1989</td>
</tr>
<tr>
<td>4</td>
<td>1990</td>
<td>1994</td>
</tr>
<tr>
<td>5</td>
<td>1989</td>
<td>1993</td>
</tr>
<tr>
<td>6</td>
<td>1991</td>
<td>1993</td>
</tr>
<tr>
<td>7</td>
<td>1991</td>
<td>1992</td>
</tr>
<tr>
<td>8</td>
<td>1991</td>
<td>1993</td>
</tr>
<tr>
<td>9</td>
<td>1990</td>
<td>1993</td>
</tr>
<tr>
<td>10</td>
<td>1989</td>
<td>1994</td>
</tr>
</tbody>
</table>

MRC/CSO Social and Public Health Sciences Unit, University of Glasgow.
Education data was very messy - inconsistencies within education data - having to check for consistency within individuals for all variables (very time-consuming!!).

Data extraction problems - delete all education data (January 2014)!!
New (cleaner!!) dataset received end February 2014.

Minor Problems (some examples)

- Death records for individuals who had further records (health and/or education) after date of death.
 - Most of these death records had been linked to individuals who were multiple birth babies and the death record was actually for their twin: delete death record.

- Mismatch between education and health records based on gender/YOB cross-checks: full exclusion

- Attainment data where the date of award was after supposed date of school-leaving.
 - Keep the attainment record if the date of award within 1 year of school-leaving.
 - Assumed this would capture courses that had been taken at school, but had been awarded at a later date due to late submission, but would exclude any courses taken at college.
Benefits

- Large datasets
 - Rare outcomes

- Range of confounders

- Natural experiments
 - Causal relationships

Opportunities for Publications

- Inequalities in Perinatal outcomes

- Educational effects on health of young adults
 - Stewart CH, Leyland AH. The role of educational attainment in explaining the relationship between perinatal conditions and suicidal behaviour in young adults in Scotland: a prospective cohort study
 - Cohort profile paper
 - 4 conference presentations

- Evaluation of the Health in Pregnancy Grant policy
 - NIHR Report in press
 - 5 conference presentations
Research in Progress

- Evaluation of the Healthy Start Voucher Scheme
 - Linking survey data to routine data
 - NIHR Report; academic journals
 - 4 conference presentations

- The health of Looked After Children in Scotland
 - Linking administrative routinely collected data across sectors
 - Education and health
 - UBDC project
 - Facilitating application process
 - Liaising with data controllers
 - Providing expertise in data access agreements

Final Reflections: What I’ve Learned

- Linking previously unlinked data is a long process, but it can provide access to large, rich datasets.

- Document all the data cleaning decisions that have to be made and any cases that have to be excluded.

- Get in touch with data custodians sooner rather than later if data seem more ‘messy’ than expected.
Final Reflections: What could have been done better?

- Data custodians could have been better at suggesting further information that I would probably need e.g. continuous inpatient stay variable - chance conversation with colleague.
 - Having data agencies and ‘experts’ that know the data and what is available may help to overcome this.

Thank you

catherine.stewart@glasgow.ac.uk

ruth.dundas@glasgow.ac.uk
Variables that had to be requested at a later date

Health
- Continuous inpatient stay (no further PAC approval)
- Birth weights taken from SBR (no further PAC approval)
- GP de-registration date (further PAC approval required)

Education
- School deprivation measure (SIMD) (no further approval)
- Attainment data at SCQF levels 1 and 2 (further approval required and supplied with restrictions)
More Data Cleaning Examples

- Implausible-looking hospital admissions based on differences in YOB across SMR schemes e.g. SMR01 & SMR02 and education records.
 - Does SMR01 record look plausible e.g. gender matches across other SMR schemes and education records, YOB matches between SMR02 and education (so possibly not a completely wrong match between health and education) and diagnosis code looks plausible for age (e.g. no MI etc).

- Implausible-looking hospital admissions based on differences in YOB within SMR schemes. Assume possible ‘typos’ if:
 - Wrong-looking YOB differed by a decade e.g. 1983 vs 1993.
 - YOB differed by digit adjacent to ‘true’ digit on keyboard e.g. 1990 vs 1999.
 - Correct digits all present, but just in wrong order e.g. 1968 vs 1986.