Using new forms of data to analyse cycling activity

Transcript from webinar video recording

1
00:00:04,720 --> 00:00:11,120
[Muir Houston] So, let me introduce everyone to this session on using new forms of data to

2
00:00:11,120 --> 00:00:17,440
analyse cycling activity. Dr Jinhyun Hong is a Senior Lecturer in transportation planning

3
00:00:17,440 --> 00:00:24,720
in Urban Studies and leads the Transport and Infrastructure team at UBDC. Jin's research

4

00:00:24,720 --> 00:00:30,320
interests include interaction amongst the built environment, travel behaviour and air quality,

5

00:00:30,320 --> 00:00:38,480
transportation and planning, the built environment, safety and walking and travel survey techniques.

00:00:38,480 --> 00:00:45,280
I see we have participants from Australia, Austria, Belgium, China, Germany, Iraq, the Philippines, Russia,

7
00:00:45,280 --> 00:00:48,880
Turkey, Ukraine, and the UK. Sorry if I've missed any of you.

8
00:00:49,920 --> 00:00:55,120
As you will have seen this session is recorded and will be uploaded on the web in an accessible

9

00:00:55,120 --> 00:01:01,680
format at some point after the session. Details will be provided on the UBDC website.

10
00:01:01,680 --> 00:01:08,080
Also, check out the website for other resources, including how to access other data and

11
00:01:08,080 --> 00:01:14,240
other training and events delivered by the UBDC. As we've mentioned, cameras will be turned

12
00:01:14,240 --> 00:01:20,160
off and microphones muted to aid privacy and also for bandwidth reasons. Please use the Q\&A

13

00:01:20,160 --> 00:01:26,240
facility to ask questions. These will be collated, and responses will be provided in the Q\&A

00:01:26,240 --> 00:01:32,800
session. In terms of the session structure, Jin will give a presentation for around 30 minutes,

15
00:01:33,440 --> 00:01:39,920
which will be followed by a Q\&A session of 10 to 15 minutes. We will then have a break between

16
00:01:39,920 --> 00:01:46,800
sessions for 15 minutes or so and then we will have our second session with a similar format -

17
00:01:46,800 --> 00:01:53,600
30 minutes presentation and again 10 to 15 minutes for questions and answers.

18
00:01:53,600 --> 00:01:59,760
So, I'd just like to introduce our presenter Jin Hong and I'll hand over to Jin.

19
00:02:02,400 --> 00:02:09,040
[Jin Hong] Thanks a lot Muir and thanks to all of you for joining today's webinar and I'm sorry for the

20
00:02:09,040 --> 00:02:16,800
delay. In this session, as Muir said, I will talk about crowdsourced cycling data,

00:02:16,800 --> 00:02:23,600
that is Strava data, and as a researcher how we have used the data for cycling studies.

22
00:02:24,560 --> 00:02:31,680
In the next session I will do some kind of tutorial, as you may know.

23
00:02:34,240 --> 00:02:45,200
Here's a brief background about the studies. So, the large benefits of

24
00:02:45,200 --> 00:02:51,600
cycling have been well documented. It could reduce the auto dependency, therefore reduce

25
00:02:51,600 --> 00:02:57,840
the level of congestion and emissions. It could also improve the public health because people are

26
00:02:57,840 --> 00:03:05,040
doing physical exercise while cycling. In addition, if you look at the travel surveys from different

27
00:03:05,040 --> 00:03:12,000
countries, you will notice that a substantial amount of the automobile trips are short trips.

28
00:03:12,960 --> 00:03:19,760
That means their travel distance is between two and five kilometres. What does

00:03:19,760 --> 00:03:26,800
that mean? This is quite a long distance for walking. However, this is a really reasonable travel

30
00:03:26,800 --> 00:03:34,400
distance for cycling. So, it implies that cycling can be a good alternative of the automobile.

31
00:03:35,360 --> 00:03:41,440
So, because of this huge benefit and the potential, many countries have used their substantial

32
00:03:41,440 --> 00:03:49,520
resources to improve the cycling environment and also increase cycling. And this is the same for

33
00:03:49,520 --> 00:03:56,880
the UK. The active travel - walking and cycling - is one of the priorities for the National Transport

34
00:03:56,880 --> 00:04:03,680
Strategies in the UK. In Scotland we have a really ambitious vision. Transport Scotland

35
00:04:03,680 --> 00:04:09,520
wants 10 percent of journeys to be made by bicycle by 2020. This is really ambitious

36
00:04:09,520 --> 00:04:16,000
because now we have one to three percent at most. And the cities are responsible for achieving this.

37
00:04:16,880 --> 00:04:27,440
So, again we are trying to promote cycling. In Glasgow, the local government have also introduced several

38
00:04:27,440 --> 00:04:35,760
measures and interventions to promote cycling. For example, they want to use the 2014 Commonwealth Games -

39
00:04:35,760 --> 00:04:42,320
this is the international sports games - as a catalyst to promote cycling,

40

00:04:42,320 --> 00:04:48,240
to increase the cycling. So, they provided several cycling infrastructure lanes

41
00:04:48,880 --> 00:04:56,080
before, during and after the Commonwealth Games. In addition, they also provide bike share programme Nextbike

42
00:04:56,080 --> 00:05:04,320
as you can see in the pictures. They are quite popular at this moment. However, as a planner if you

43
00:05:04,320 --> 00:05:11,040
want to make better cycling plans, you really need to understand the cycling patterns, cycling behaviour,

44
00:05:11,040 --> 00:05:18,480
and also, you need to understand how to use the proper data to evaluate the effectiveness of

45
00:05:18,480 --> 00:05:26,960
interventions. Unfortunately, these are very difficult because we don't have proper

46
00:05:26,960 --> 00:05:35,440
data. We have travel surveys. So, many people actually use travel surveys to examine travel behaviour.

47
00:05:36,000 --> 00:05:44,480
However, there are only a small number of cyclists in most cities and although its representative sample

48
00:05:44,480 --> 00:05:49,680
does travel surveys, they only include a small portion of the people from the population,

49
00:05:49,680 --> 00:05:57,680
compared to the population. What happens is, at the end, you may end up with 40 or 50 people who cycled

50
00:05:57,680 --> 00:06:05,280
in your travel survey for a metropolitan area. Then that's too small. You cannot really use that

51
00:06:05,280 --> 00:06:12,720
data to build some model or to analyse detailed cycling activities. We also have a manual and

52

00:06:12,720 --> 00:06:19,600
automatic count. So, for example, in Glasgow every year for two days they manually count how many

53
00:06:19,600 --> 00:06:26,960
cycles in and from the city centre and in some cities they installed the automatic counters

54
00:06:26,960 --> 00:06:34,640
to continuously measure the cycle activities. Again, these are very expensive hence infrequent. There

55
00:06:34,640 --> 00:06:41,440
are only a small number of automatic counters in the city because again it's very expensive.

56
00:06:41,440 --> 00:06:48,000
So, it's a really good ground to this data they are, but there are significant

57
00:06:48,000 --> 00:06:54,800
limitations if we want to use this data to examine the cycling patterns, cycling behaviour.

58
00:06:56,880 --> 00:07:04,320
Due to the technology improvements, now we have new forms of data and these data provide 59

00:07:04,320 --> 00:07:10,720
detailed cycling activities at the fine spatial and temporal scale. The Strava

60
00:07:10,720 --> 00:07:17,200
cycling app is one of them and I think it's one of the most popular cycling apps in the world.

61
00:07:17,840 --> 00:07:26,160
And they use GPS to track cyclist's journeys, so they know exactly what time and where the

62
00:07:26,160 --> 00:07:34,320
the Strava users are using cycling. So that is a really amazing data set and as time passes

63
00:07:34,320 --> 00:07:39,920
more people are using this app because it became popular. So, then what does that mean? The quality

64
00:07:39,920 --> 00:07:45,360
of the data will improve because there are more data.

65
00:07:47,200 --> 00:07:53,520

In addition, the data are already being collected all over the world because everyone can 66

00:07:53,520 --> 00:08:01,440
download the app. So, we can compare the same policy in different countries using

67

00:08:01,440 --> 00:08:07,280
the same data format and we also can use the same methodological approaches

68

00:08:07,280 --> 00:08:14,720
to different cases because the data structures are exactly the same. However, as a researcher we

69
00:08:14,720 --> 00:08:21,520
really need to understand then what could be the potential weaknesses of these emerging

70
00:08:21,520 --> 00:08:30,480
forms of data, which could influence our study. So, what are the weaknesses? The first thing

71

00:08:30,480 --> 00:08:38,640
is representativeness. I guess you already know this one. For example, in the Strava case,

72
00:08:38,640 --> 00:08:44,960
it's more likely young male people are more likely to use the Strava apps and they are more

00:08:44,960 --> 00:08:52,320
experienced cyclists than the normal cyclists. So, if their cycling patterns are different from those

74
00:08:52,320 --> 00:08:59,760
of the normal cyclists then the research, the analysis, could be biased. So, we could

75
00:08:59,760 --> 00:09:06,880
get incorrect conclusions. So, there are many people recently who have tried to employ

76
00:09:06,880 --> 00:09:14,800
the advanced analytics methodology methods to correct the bias. There are also special variations

77
00:09:15,760 --> 00:09:22,640
As I said, most cities have only a small number of cyclists and among them only a small

78
00:09:22,640 --> 00:09:31,040
number of people actually uses Strava apps. So, if we look at the popular roads

79
00:09:31,040 --> 00:09:36,880
you may find some people who use the Strava apps, but if you look at the less popular roads

80
00:09:37,840 --> 00:09:43,280
although there are actual cyclists you may not have any Strava users. So,

81
00:09:44,080 --> 00:09:51,200
it depends on where the place is. Some people argue that Strava data is more useful

82
00:09:51,200 --> 00:09:57,600
for urban areas where the level of cycling activities is high compared to the rural areas.

83
00:09:59,120 --> 00:10:04,640
Lack of social demographic information, mainly because of privacy issues. We all know that the

84
00:10:04,640 --> 00:10:10,240
social demographic factors are very important determinants of the travel behaviour like

85
00:10:10,240 --> 00:10:18,320
age, gender, income, education level and so on. However, we don't have that information.

86

00:10:18,320 --> 00:10:22,720
The last one that I want to talk about is regulation from the company.

87
00:10:22,720 --> 00:10:29,600
This is actually very important, and I will talk about the Strava case later. Because the data

88
00:10:29,600 --> 00:10:36,480
is owned by the private company, if they somehow change their regulation or their products because

89
00:10:36,480 --> 00:10:46,080
of privacy or to protect their app users, this is beyond our control. We cannot really request

90
00:10:46,080 --> 00:10:53,040
against their decision. So, we just need to accept it

91
00:10:53,040 --> 00:11:00,720
and they could influence our whole study or the methodologies that we have used before. And

92
00:11:00,720 --> 00:11:06,480
this can be another problem in the near future because now a lot of private companies

93
00:11:06,480 --> 00:11:14,320
collect their own data. There are also others. Then what are the chances.

94
00:11:14,320 --> 00:11:20,880
I already mentioned several things that is most up-to-date information right now they are also

95
00:11:20,880 --> 00:11:26,640
collecting the data, because several people are using the Strava apps it's cost saving they

96
00:11:26,640 --> 00:11:32,400
don't really pay anything and it's very detailed cycling activity at the fine spatial and temporal

97
00:11:32,400 --> 00:11:38,480
scales and again a growing number of users. So, that could improve the quality of the data.

98
00:11:39,920 --> 00:11:45,360
So, this was the brief introduction about the cycling studies and also Strava.

99
00:11:46,240 --> 00:11:54,480
Here, I want to introduce three published papers that use the Strava data from our side.

100
00:11:54,480 --> 00:12:01,680
And I hope this will give you some kind of idea about how we use the data. And these are

101
00:12:01,680 --> 00:12:09,040
the three research questions that we aim to answer. The first one is can crowdsourced cycling data

102
00:12:09,040 --> 00:12:15,920
be utilised for cycling behaviour studies? This is about the quality of the data, whether the

103
00:12:15,920 --> 00:12:25,200
Strava data are good enough for studying the cycling activities. The second one is, if yes then

104

00:12:25,200 --> 00:12:32,560
where commuting cyclists travel and what are the influential factors for their route choice? Because

105
00:12:32,560 --> 00:12:39,120
we have such detail on cycling activities in the whole city area.

106
00:12:39,760 --> 00:12:46,720
The last one is, do the new cycle infrastructure investments in Glasgow produce effective impacts?

107
00:12:47,280 --> 00:12:53,840
So, these are the three research questions that I'm going to introduce. So, what data and variables?

108
00:12:53,840 --> 00:13:01,760
We used multi-years of Strava data, four years of Strava data 2013, 2014, 2015 and 2016.

109
00:13:01,760 --> 00:13:09,360
By the way, these data are available in UBDC. You can get the data based on your request.

110
00:13:10,720 --> 00:13:19,360
Data used to be provided as origin and destination with route information at the output

00:13:19,360 --> 00:13:27,280
area level. Output area is a UK census area. It's pretty small. So, what it means is we know for

112
00:13:27,280 --> 00:13:36,880
each trip, where the trip starts - output area - and what output area the person travelled and where is

113

00:13:36,880 --> 00:13:46,080
the destination - output area. This is pretty nice data. Second one is a more detailed one - minute by minute

114
00:13:46,080 --> 00:13:53,040
link count. Link count is at the road segment. We know

115
00:13:53,040 --> 00:14:00,160
how many people cycled on a particular time, minute by minute, this is really detailed

116
00:14:00,160 --> 00:14:08,320
data. We also have information about waiting times at junctions and then aggregated demographic

117
00:14:08,320 --> 00:14:16,880
information - for example, age and gender for your city. They just give you an aggregated summary.

118
00:14:19,280 --> 00:14:30,160

Now, they changed the product because of privacy issues. From 2018 Strava Metro the company has

119
00:14:30,160 --> 00:14:37,440
provided binned count data. So, what does that mean? They aggregated cycling counts in five

120
00:14:37,440 --> 00:14:44,240
count buckets. For example, if counts are less than three or equal to three it becomes zero.

121
00:14:45,360 --> 00:14:51,040
if counts are between four and seven it becomes five. What's the implication?

122
00:14:51,840 --> 00:14:57,520
As I said, there are a small number of cyclists and among them a small number of people are using

123
00:14:57,520 --> 00:15:04,320
the apps. So, what it means is if you look at the whole city it's a file for daily or hourly data.

124
00:15:04,320 --> 00:15:10,720
You will see a lot of measured roads will only have one to three or zero

125
00:15:11,840 --> 00:15:21,920
Strava users. So, depending on the cities, one Strava user could represent 25 to 100 actual cyclists.

126
00:15:21,920 --> 00:15:27,440
And because they are binning this data, they just lose huge information.

127
00:15:28,240 --> 00:15:33,120
So, that could influence your level of aggregation, your analysis unit.

128
00:15:34,720 --> 00:15:40,320
Now, they only provide hourly aggregation in the lowest level of aggregation,

129
00:15:40,320 --> 00:15:47,520
not a minute by minute. I think it's because of that issue. So, that is a big issue. Again,

130
00:15:47,520 --> 00:15:53,840
if that happens again, the whole methodologies we have used before may not be available because

131
00:15:54,480 --> 00:15:59,760
as some methods use the more detailed temporal scale.

132
00:16:01,920 --> 00:16:08,160
So, we used four years of the Strava data but at the time the unbinned data

133
00:16:08,160 --> 00:16:13,280
was available so we used unbinned data for our own study.

134

00:16:15,520 --> 00:16:22,080
We also used a manual count of cyclists from cordon count carried out in Glasgow in the same time

135
00:16:22,080 --> 00:16:30,560
period. So, there are 38 locations and two days in general in September or per year. I will show you

136
00:16:30,560 --> 00:16:36,720
the location later. And we also use Glasgow cycle infrastructure data as you can see on the map that

137
00:16:36,720 --> 00:16:45,680
is the current infrastructure map. And then this is a river, and we see there are really good

138
00:16:45,680 --> 00:16:55,040
nice cycling infrastructure alongside the river and here and other parts. So, we can see some

139
00:16:55,040 --> 00:17:01,120
areas like this one - east side of Glasgow - where it's the most deprived area, there are

140
00:17:01,120 --> 00:17:06,720
not many good cycling infrastructure. So, we can see some kind of special inequality issues here.

00:17:09,440 --> 00:17:14,240

So, for the research question one, about the quality of the data, how can we check

142
00:17:14,240 --> 00:17:21,440
the quality? We can check the ground truth data, which is a manual count data, with Strava data

143
00:17:21,440 --> 00:17:29,280
So, in the map you can see the 38 locations and that's the locations where people check the

144
00:17:29,280 --> 00:17:37,200
number of cyclists. And we know the location and time of the number of actual cyclists

145
00:17:37,200 --> 00:17:44,400
and we know exactly time and location from the Strava data. So, we compare them.

146
00:17:45,200 --> 00:17:52,160
That's how we do that. So, there are two types of analysis. One is a correlation analysis and the

147
00:17:52,160 --> 00:17:58,240
other one is simple linear regression model. The equation shows the simple linear regression model.

148
00:17:58,240 --> 00:18:06,800
y represents the number of cyclists from the cordon count, so ground truth data.

00:18:06,800 --> 00:18:13,600
And x Strava means the number of Strava cycling trips with a simple linear regression model. And 150

00:18:13,600 --> 00:18:19,280
for this analysis we use time period or three time periods. What it means is we aggregate the

151
00:18:19,280 --> 00:18:26,640
count for am peak, afternoon and pm peak. The reason is, we found later if we aggregate

152

00:18:26,640 --> 00:18:34,720
that level we could have the data quality improve and be much better. So, the total

153
00:18:34,720 --> 00:18:42,560
sample size is 684 because we have 38 locations, three time periods and two days and three years.

154
00:18:44,400 --> 00:18:49,440
That is for the first research question. So, for the second research question

155
00:18:49,440 --> 00:18:54,960
we use the 2016 Strava data but OD matrix. We can construct OD matrix

156
00:18:54,960 --> 00:19:02,560
because we know the output area of the origin and destination for each trip. So, we compare 157

00:19:02,560 --> 00:19:09,840
the routes taken by commuting cyclists. That means the Strava data, raw Strava data,

158

00:19:10,560 --> 00:19:17,680
with the route they would take if they minimised their travel distance. So, how can we do that? We

159

00:19:17,680 --> 00:19:25,360
use the traffic assignment model and the estimate based on the same OD matrix - the shortest travel

160
00:19:25,360 --> 00:19:33,440
distance path. And then find out the traffic volume per each link edge and we compare them.

161
00:19:34,160 --> 00:19:41,520
And we also use Google Maps and local knowledge to figure out why some roads are popular why some

162
00:19:41,520 --> 00:19:49,840
roads are less popular. For research question three we use the four years of

163
00:19:49,840 --> 00:19:58,720
Strava data and we calculate the total number of Strava trips per output level per month.

00:19:58,720 --> 00:20:06,080
It's monthly total. Why? As I will show you later, as we increase the level

165
00:20:06,080 --> 00:20:12,480
of aggregation the data quality becomes much better. So, monthly or average we think is really

00:20:12,480 --> 00:20:21,680
good enough for this study. We used output area as analytical units. Then we use the fixed effect

167
00:20:21,680 --> 00:20:28,080 poisson panel regression model as you're shown in the equation. So, the dependent variable is

168
00:20:28,080 --> 00:20:36,400
number of cycling trips in area i, output area i in month t. This is the four years of data, so panel

00:20:36,400 --> 00:20:45,040
data. And we have four infrastructure, you can see on the map. And then this one is interesting

170
00:20:45,040 --> 00:20:52,400
because the longest one connects the suburban area to the city centre. Here is the city centre.

171
00:20:55,280 --> 00:21:00,560
So, this is the result for research question one - a correlation analysis and simple linear

172
00:21:00,560 --> 00:21:05,840
regression model. We have different levels of aggregation because we think if we

173
00:21:05,840 --> 00:21:11,520
aggregate more and more, the data become larger and larger, we will have more counts

174
00:21:11,520 --> 00:21:18,800
so we may have a better kind of result. So, the lowest level of aggregation is hourly

175

00:21:18,800 --> 00:21:23,760
and the last one is the two days because we only have two days of cordon count data.

176
00:21:24,800 --> 00:21:32,880
And correlation, even hourly, we find point seven eight almost 0.8 . This is very high. It

177
00:21:32,880 --> 00:21:41,040
gives us a positive signal. For the two days of aggregation we have almost 0.9, which is a really

178
00:21:41,040 --> 00:21:48,400
good kind of indicator. When we look at the linear regression model result, the estimates

179
00:21:48,400 --> 00:21:53,920
for the Strava trips our independent variable is positive and very significant

180
00:21:55,120 --> 00:22:02,000
and the adjusted R square is 0.74 . By using this one variable this simple linear regression model

181
00:22:02,000 --> 00:22:10,000
can explain the 74 percent of the variations in the cordon count data. That is a huge one.

182

00:22:10,640 --> 00:22:17,920
So, these two results gives us kind of part of a signal. Yes, Strava data could be used to examine

183
00:22:17,920 --> 00:22:24,480
the spatial variation of the cycling patterns. The full graph shows the relationship between Strava 184

00:22:24,480 --> 00:22:31,760
data and the cordon count. So, x axis is number of Strava data, y axis is number of

185
00:22:31,760 --> 00:22:38,160
cordon count. And you can see hourly aggregation there are a lot of noise at the bottom part left

186
00:22:38,160 --> 00:22:44,560
bottom because again there are only small number of people who cycle. But if we aggregate, we see

187
00:22:44,560 --> 00:22:50,080
more clear pattern of the linear regression and noise becomes smaller. So, based on this

188
00:22:50,080 --> 00:22:58,080
result we concluded that, yes, it could be good proper data for cycling studies.

189
00:22:59,680 --> 00:23:06,560
For the second research question, we compare the short routes and actual routes. The graph on your

190
00:23:06,560 --> 00:23:14,240
left panel it's actual Strava data, so that's where people really cycled. So, we see alongside

191
00:23:14,240 --> 00:23:20,880
the river there is some concentration, they are popular. That makes sense because amenity is one of

192
00:23:20,880 --> 00:23:28,320
the main factors for cycling and also safe cycling lane infrastructure. For the shortest

193
00:23:29,360 --> 00:23:35,600
paths you see more evenly distributed kind of patterns. And that also makes sense but

00:23:35,600 --> 00:23:42,800
it's already hard to see. So, to make a better vision we calculate the difference between them.

195
00:23:43,680 --> 00:23:51,920
Here. The red means it's more popular, so there are more cyclists,

196
00:23:51,920 --> 00:23:57,840
cycling trips happened on these roads compared to predicted ones. And the black means

197

00:23:57,840 --> 00:24:05,360
they are unpopular, less popular, and the thickness means the size of difference. So, we see

198
00:24:05,360 --> 00:24:11,760
alongside the river where there are good cycling infrastructure, there are really many people cycling.

199
00:24:12,640 --> 00:24:19,360
But around the city centre area there are some red lines and black lines, but they are

200
00:24:19,360 --> 00:24:24,880
very thin. It means their difference doesn't really get different. That totally makes sense.

201
00:24:26,160 --> 00:24:32,640
Right? So, then we see based on our local knowledge, we want to figure out why some roads are less

202
00:24:32,640 --> 00:24:42,080
popular. And here's one example this is one from the southside of the city centre and other

203
00:24:42,080 --> 00:24:47,440
roads are very popular but this road, although it's very straightforward, it's straight

204
00:24:47,440 --> 00:24:54,880
length, it's less popular. And see through the Google Map we want to see

205
00:24:54,880 --> 00:25:00,960
what's the problems. And these are the two pictures. We can see the bus stops, traffic lights with the

206
00:25:00,960 --> 00:25:05,588
pedestrian crossing and street parking. See, there is a lot of street parking and these cars

207
00:25:05,588 --> 00:25:11,021
there and no cycling infrastructure. Those are the factors often mentioned in previous

208
00:25:11,021 --> 00:25:18,080
studies, in particular studies, as a barrier of the cycling. So, we see yeah, maybe that's the reason.

209
00:25:18,080 --> 00:25:21,920

Another one, this is the east part of Glasgow

210
00:25:21,920 --> 00:25:29,200
and actually there is a cycling lane, however shared with buses and you can see a lot of cars parked.

211

00:25:29,760 --> 00:25:36,240
And also, the built environment. This area is one of the most deprived areas - high crime rate,

212

00:25:36,880 --> 00:25:43,840
the safety issue. Again, these are often mentioned as barriers for cycling and we can find those

213
00:25:43,840 --> 00:25:51,520
kinds of potential factors. So, when we do this analysis, we think this will be really good

214
00:25:51,520 --> 00:25:57,920
and simple tools for planners. They can really easily see where are the popular roads, where are

215

00:25:57,920 --> 00:26:02,800
the less popular roads and what are the potential reasons. They can understand their cities better.

216
00:26:04,880 --> 00:26:12,960
For the research question three, we use the model and these are the four investments. And we

00:26:12,960 --> 00:26:19,520
remove the time trend and then see how the total monthly count changed and the

218

00:26:20,080 --> 00:26:26,400
line here, you see the different location of the line, that's when the

219
00:26:26,400 --> 00:26:34,720
new infrastructure was open to the public. Right? And we see the three of them have

220
00:26:34,720 --> 00:26:42,080
a pretty positive increase after the new infrastructure were opened. However, this one

221
00:26:42,080 --> 00:26:47,840
the Routes to Cathkin 1, which actually connect the city centre to the suburban area, the longest

222
00:26:47,840 --> 00:26:56,960
one, has kind of a negative trend. So, after these basic stats we jump into the model and then

223
00:26:56,960 --> 00:27:04,320
these are the research from our model. We first measure the overall effect, and you can see it's

224
00:27:04,320 --> 00:27:12,240
there is a positive impact and it's about eight percent increase. You

225
00:27:12,240 --> 00:27:19,440
take the exponential to interpret the result. But the P -value is 0.08 which is greater than 0.05 so it's

226
00:27:19,440 --> 00:27:28,080
not really statistically significant. However, if you examine the separate effects, we notice that

227
00:27:29,200 --> 00:27:33,840
three among four have very positive impacts and they are very significant.

228
00:27:35,120 --> 00:27:41,840
It means a 12 percent to 18 percent increase after new infrastructure were introduced.

229
00:27:42,480 --> 00:27:48,960
and the right one, the first one, Routes to Cathkin 1 has a negative kind of impact

230
00:27:48,960 --> 00:27:54,320
compared to the other output area where there's no infrastructure. So, that is the

231
00:27:54,320 --> 00:28:00,880
reason why we didn't really get the significant result for the overall effect. And these three

232
00:28:00,880 --> 00:28:06,800
new infrastructure, they are close to the city centre area and they include the segregated

00:28:06,800 --> 00:28:12,480
lanes. So, they could provide some kind of policy implication. If you want to get a short-term impact

234
00:28:12,480 --> 00:28:18,880
then better to build more cycling lanes maybe near the city centre where the

235
00:28:20,000 --> 00:28:29,120
level of cycling activities is high and also the segregated lens could be important. So, this is

236
00:28:29,120 --> 00:28:35,440
the end of the slides. If you want to look more in detail about each of the studies and methodologies

237
00:28:35,440 --> 00:28:41,520
you can look at these three papers. They are open access, so you can download for free

238
00:28:41,520 --> 00:28:49,040
and this slide will be available for you, so you can get the full information. Thank you very much.

239
00:28:51,680 --> 00:28:58,000
[Muir Houston] Thank you very much Jin. We have some questions here. If I read them out one by one Jin, you

00:28:58,000 --> 00:29:05,040

could maybe try and answer them? So, the first question is, and I think you touched on this.

241

00:29:05,040 --> 00:29:12,000
How much Strava use the apps for commuting rather than the kind of lycra warriors that we see racing

242

00:29:12,000 --> 00:29:17,440
about the city that you mentioned, how many are kind of normal commuters if you like?

243
00:29:18,640 --> 00:29:25,760
[Jin Hong] So, in our case it was almost five percent of people are among the whole cyclists,

244
00:29:25,760 --> 00:29:33,120
five percent of the people are using the Strava apps and that's for our city

245
00:29:33,120 --> 00:29:40,960
but it depends on city by city. [Muir Houston] Ok, thanks for that. Now probably there might be some

246
00:29:40,960 --> 00:29:46,560
answer in the link you gave for your papers, is there in terms of cycling research case studies a journal?

247
00:29:47,440 --> 00:29:52,160

Is there transport planning or any other kind of common journals that you

248
00:29:52,160 --> 00:29:57,840
tend to publish in Jin? [Jin Hong] Yeah, so we published several papers in several leading transport

249

00:29:57,840 --> 00:30:05,280
journals. Transport Geography, Transportation and then Environment Planning A and B. So, we also

250

00:30:05,280 --> 00:30:11,200
published some paper in Transport Research part A, which is a top transport journal. So,

251
00:30:11,200 --> 00:30:17,840
you can find more information on my website or on the UBDC website. [Muir Houston] That's great thanks. And

252
00:30:18,640 --> 00:30:25,360
now the next one: have you tried to identify trips in cycling mode from other mobile phone

253
00:30:25,360 --> 00:30:34,480
data? For example, Telefonica or Voda UK instead of Strava. [Jin Hong] No, actually we haven't because

00:30:35,520 --> 00:30:40,960
now we are trying to get some mobile phone data, Urban Big Data Centre, we try to buy

255
00:30:40,960 --> 00:30:46,080
some mobile phone data, then we couldn't do it. That is actually the next step that we want to do

256
00:30:46,080 --> 00:30:51,920
because we want to also look at the other data sources. So, currently we are planning to buy

257
00:30:51,920 --> 00:31:00,800
some mobile phone data and we will also plan to conduct a survey with the apps

258

00:31:00,800 --> 00:31:06,160
so we can check the people's location and their trips. So, then we can use this

259
00:31:06,160 --> 00:31:14,560
data to detect mode choice from the mobile phone data. So, we hope we can have another session later

260
00:31:14,560 --> 00:31:21,040
using these new forms of data. [Muir Houston] Good stuff. Now another question here specifically about somebody

261
00:31:21,040 --> 00:31:26,160
who maybe knows Glasgow. In terms of popularity of routes for cycling, was consideration given

262
00:31:26,160 --> 00:31:31,680
to the physical and environmental factors e.g. topography or gradient? I think what they're

263
00:31:31,680 --> 00:31:37,760
meaning is, in Glasgow some of the streets are very big, long hills on them. Did people make a

264

00:31:37,760 --> 00:31:43,680
decision, did you see any of that Jin where people took a route because it was an easier cycle?

265

00:31:44,240 --> 00:31:49,920
[Jin Hong] Yes. Yes, so I will show you in the tutorial, actually. I will show you how

266
00:31:49,920 --> 00:31:56,000
to produce the maps using the Strava data and you can see the majority of the activity happens

267
00:31:56,000 --> 00:32:02,240
alongside the river which is very nice infrastructure it provides and very flat.

268

00:32:03,040 --> 00:32:10,240
And then you will see some kinds of less popular roads in some areas, very hilly areas.

269
00:32:11,200 --> 00:32:17,760
So, you can see, I mean you can easily examine the kinds of patterns by using Strava data

00:32:17,760 --> 00:32:25,200
for your own city. [Muir Houston] Good stuff. Now one, I'm not sure how much detail we provide here.

271
00:32:25,200 --> 00:32:31,920
May I ask how much Strava charged for the data and what is the attitude of people in Strava towards

272
00:32:31,920 --> 00:32:38,880
research projects or are they very commercial-focused? [Jin Hong] Yeah, this is the one that we may ask

273

00:32:38,880 --> 00:32:47,200
to Andrew who's the administration manager in UBDC, senior manager. I think

274

00:32:48,240 --> 00:32:57,520
we somehow spent 60k to buy the data for the Glasgow area for several years. But that depends

275
00:32:57,520 --> 00:33:04,960
on the license because, as you see, we purchase the data and so everyone who wants Strava data

276

00:33:05,520 --> 00:33:11,200
they can request and they can get it for free. So, if we are interested in the Strava data for

277
00:33:11,200 --> 00:33:18,560

Scotland especially, you can get the whole years of data from Urban Big Data Centre. And 278

00:33:18,560 --> 00:33:26,720
they are really eager to engage with academics. I want to say because we also have several

279
00:33:26,720 --> 00:33:32,640
conversations with them and they all know our studies. Sometimes they blog our studies.

280

00:33:33,600 --> 00:33:40,720
The problem is the current situation about safety. So, they try to change their data products

281
00:33:40,720 --> 00:33:46,240
and this is because its associated with running their companies.

282
00:33:46,800 --> 00:33:51,840
There could be some kind of issue. But in general, they are very friendly.

283

00:33:54,800 --> 00:34:01,200
[Muir Houston] Another question Jin, can you recommend some resources to study the traffic assignment model?

284
00:34:02,400 --> 00:34:07,280
[Jin Hong] There are many actually. There are books and there are papers, but you need to really learn

285
00:34:07,280 --> 00:34:13,360
the basic statistics model inside the traffic assignment model and also you need to

286
00:34:13,360 --> 00:34:19,600
run, if you want to only know the traffic assignment model you can just

287
00:34:19,600 --> 00:34:26,720
use, there are already code available online and also if you

288
00:34:26,720 --> 00:34:33,840
the easiest way is to use the travel demand models software

289
00:34:34,880 --> 00:34:42,080
TransCAD or VISUM. Then you can easily actually do that if you have the data. So yeah there are

290
00:34:42,080 --> 00:34:47,840
a lot of books if you can just google it or you can find several books or papers.

291
00:34:48,880 --> 00:34:58,560
[Muir Houston] And a question about socio-economic variables - do you use that much Jin? [Jin Hong] No,

292
00:34:58,560 --> 00:35:04,320
again, this is not actually included in the Strava data. They only provide, for example in the city of

293
00:35:04,320 --> 00:35:11,680
Glasgow, they only provide the distribution of the age and gender. So, how many females are in that

294
00:35:11,680 --> 00:35:19,040
area for that data. So, this is very aggregated data. So, we could actually use that data to

295
00:35:20,560 --> 00:35:26,000
check with the census data and see who are using the Strava apps. However, we cannot

296
00:35:26,000 --> 00:35:32,080
really use that information for the analysis because we don't really know for each trip.

297
00:35:34,480 --> 00:35:39,600
[Muir Houston] And one perhaps related to the current restrictions where there seems to have been a

298
00:35:39,600 --> 00:35:46,080
bit of an increase certainly in bike sales anyway. Do you think maybe in these

299
00:35:46,080 --> 00:35:53,440
circumstances it's easier to encourage people to cycle or walk more? [Jin Hong] Yeah, I think so and actually

300

00:35:53,440 --> 00:36:01,760
interestingly we have one draft

301
00:36:01,760 --> 00:36:10,080
paper that examines the cycling patterns after COVID-19 lockdown in the UK and you

302
00:36:10,080 --> 00:36:17,680
we saw a significant increase in terms of cycling activities. And yes, I think that's because

303
00:36:17,680 --> 00:36:24,960
of the current situation as well as the new situation, like for bike share programmes.

304
00:36:24,960 --> 00:36:31,520
They provide kind of free rides and also there are a lot of people who bought a bicycle. So yes, I

305
00:36:31,520 --> 00:36:39,280
think so. [Muir Houston] And the next one Jin, what proportion of all cyclists use Strava? Or to put it another

306
00:36:39,280 --> 00:36:45,840
way, how does your sample size for Strava data compare to the sample sizes for manual count data?

00:36:46,800 --> 00:36:51,440

[Jin Hong] That's so great. So again, as I said, I think that's the same for the first question.

308

00:36:51,440 --> 00:37:00,560
In our case it is about five percent, but again it varies city by city. So that's

309
00:37:00,560 --> 00:37:06,560
the reason why I said in one Strava user you could represent 25 people, actual cyclists, or

310
00:37:06,560 --> 00:37:12,640
sometimes, it depends on the city, it could be like 200 actual cyclists. And also, it depends on the

311
00:37:12,640 --> 00:37:17,840
location. It's urban area versus the rural area because, again, the spatial variation.

312
00:37:19,840 --> 00:37:27,440
[Muir Houston] And another one. Could average speed be used to differentiate between the sports cyclists

313
00:37:27,440 --> 00:37:34,160
and the commuters maybe? [Jin Hong] I think the easiest one is using the time. If commuters, there are certain

314
00:37:34,160 --> 00:37:40,560
times that they are using the cycles like am and pm peak. That's better I think in terms

315

00:37:40,560 --> 00:37:46,320
of separating the commuter trips and non-commuter trips and in Strava data they actually indicate

316
00:37:46,320 --> 00:37:51,840
whether they are commuting or not. So, if we are using the Strava data it's easy. If we are

317
00:37:51,840 --> 00:37:58,320
using other data sources, it's better to use the time, am peak and pm peak, to separate the commuting trips.

318
00:38:00,720 --> 00:38:06,480
[Muir Houston] Any methods for correcting the self-selection bias inherent in Strava

319
00:38:06,480 --> 00:38:13,280
data? [Jin Hong] So, there are currently several papers. They use some statistical models and use other

320
00:38:13,280 --> 00:38:19,840
built environments or other data sets and build some models to correct this bias. And there

00:38:19,840 --> 00:38:25,360
are also some studies, they are conducting their own survey and ask people whether they are

00:38:25,360 --> 00:38:32,320
using Strava apps or not and then their activities, patterns. And also, they

323

00:38:32,320 --> 00:38:40,480
measure the manual counts for different locations. And they use this whole

324
00:38:40,480 --> 00:38:47,760
kind of information together to try to correct the bias in the Strava data. So yes, there are papers

325
00:38:47,760 --> 00:38:55,920
it's not simple to understand, but there are people who are working on this issue. [Muir Houston] And here's an

326
00:38:55,920 --> 00:39:02,640
interesting one from somebody, my own research is in the area of crowdsourcing of qualitative data

327
00:39:02,640 --> 00:39:07,920
and experiences people have whilst traveling this would be a great addition to the quantitative data

328
00:39:07,920 --> 00:39:12,560
understanding the why as well as the what. Have you worked with anyone in adding that

329
00:39:12,560 --> 00:39:20,720
type of data through, for example, a bespoke app? [Jin Hong] Currently for the cycling, no. It was very hard to

330
00:39:22,320 --> 00:39:29,360
get the data based on our current situation. So, for the cycling we only have the Strava data.

331
00:39:29,360 --> 00:39:36,160
That was the main one, but again we are trying to purchase some mobile phone data

332
00:39:36,160 --> 00:39:43,360
and then if that is successful then we could actually use this new data to add new

333
00:39:43,360 --> 00:39:50,800
information. [Muir Houston] I think as well Jin, did Catherine's study not use ask people to keep a travel diary?

334
00:39:51,600 --> 00:39:57,360
[Jin Hong] That's the iMCD survey. That's a travel survey, household survey, so that's a little bit different.

335
00:39:57,360 --> 00:40:04,000
That's traditional survey data and not really the new forms of data like apps.

336

00:40:05,840 --> 00:40:11,120
But we do have another data set that we have at Urban Big Data Centre is

00:40:11,120 --> 00:40:17,520
iMCD survey which actually Muir just mentioned. There are survey, so it's a representative sample

338
00:40:17,520 --> 00:40:24,560
of the whole metropolitan area of Glasgow. And also, some 300 people carried a GPS

339
00:40:24,560 --> 00:40:31,040
life logging device for one week. So that's another data set we have. We have their

340
00:40:31,040 --> 00:40:38,640
travel diary and we have their GPS trajectory and also life logging picture data.

341
00:40:38,640 --> 00:40:44,480
So, if we may use those kinds of data together for the research

342
00:40:45,520 --> 00:40:52,320
to get more information. [Muir Houston] And actually Professor Lido, who works on that data, is giving one of

343
00:40:52,320 --> 00:40:56,880
the data dives, I think it's next week sometime. It'll be on the website, the details of that,

00:40:57,680 --> 00:41:09,360
if anybody's particularly interested in that. With regards to cyclist's safety Jin, on the routes, have you looked into how this could be understood potentially laying crowd-sourced data with STATS19

345
00:41:09,360 --> 00:41:16,480
accident information? [Jin Hong] We haven't done it, but we know there are studies and yes that's

346
00:41:16,480 --> 00:41:25,520
totally possible. We can also look at in Scotland and the UK SIMD, we know these

347
00:41:26,400 --> 00:41:32,560
crime rates of the areas so we can also see how they range between the crime rates and the

348
00:41:32,560 --> 00:41:37,040
cycling activities. And also look at the location, as the person asked.

349
00:41:39,040 --> 00:41:42,640
[Muir Houston] And just in terms of your work with Glasgow City Council Jin,

350
00:41:43,200 --> 00:41:49,120
are they quite receptive to use this data to help guide their cycling policies and plan

351
00:41:49,120 --> 00:41:55,360
infrastructure, for example new cycling lanes and stuff like that? [Jin Hong] They are very supportive all the

00:41:55,360 --> 00:42:02,160
infrastructure data they provide us for our own research and we also provide our research to them.

353
00:42:02,160 --> 00:42:07,680
And we are currently under discussion how we can help them to make a better cycling plan.

354
00:42:07,680 --> 00:42:13,280
And they are really amazing people, they are really kind and they

355

00:42:14,160 --> 00:42:18,800
are happy to collaborate with us.

356
00:42:22,240 --> 00:42:30,400
[Muir Houston] The next one, concern with using Strava data for making planning decisions as it could

357
00:42:30,400 --> 00:42:36,240
perpetuate transport inequalities by making women, older, lower income cyclists more invisible.

358
00:42:37,920 --> 00:42:46,320
[Jin Hong] Yes, so that is a reason why people try to correct the bias actually, by

00:42:46,320 --> 00:42:56,720
using other data sources. However, as we showed in the study, the general pattern is

360
00:42:56,720 --> 00:43:03,040
anyway, aggregated levels of cycling patterns. That could give us some kind of good policy implication

361
00:43:03,040 --> 00:43:11,200
and yes, I admit that, yes it could be the issue. [Muir Houston] Now I think I might know

362
00:43:11,200 --> 00:43:16,720
the answer to this one, can you track individuals over time? For example, can you see if an individual

363
00:43:16,720 --> 00:43:21,760
does the same journey every day of the week or is it just because of that binned data that's

364
00:43:22,320 --> 00:43:28,960
restricted or can you do it in the older data Jin? [Jin Hong] No actually it's not easy because we know

365
00:43:28,960 --> 00:43:35,280
for each trip the cycling routes, but that doesn't guarantee the same person has
the same id, they don't have that kind of thing. Because, yes, if we can do that, that's a very serious

367
00:43:41,120 --> 00:43:48,000
privacy issue and they don't like it and we also don't like it. So no, I don't think that's easy,

368

00:43:48,000 --> 00:43:55,600
that's possible. And especially with the bin data, so I don't think that's possible.

369
00:43:57,280 --> 00:44:04,480
[Muir Houston] And a question here about, I know UBDC is doing some work on

370
00:44:04,480 --> 00:44:13,520
CCTV data for Glasgow City Council, could you use CCTV data rather than cordon counts as some kind

371
00:44:13,520 --> 00:44:20,000
of validation? [Jin Hong] Yes, that's what we are trying to do right now. In the CCTV project we have tried

372

00:44:20,000 --> 00:44:27,200
to identify the pedestrians and cyclists based on the CCTV data. If that is successful, I'm pretty

373
00:44:27,200 --> 00:44:34,240
sure we'll get it, then we can compare that data with our Strava data and then

00:44:34,240 --> 00:44:41,920
get more validation, you know further validation work. [Muir Houston] And what is the last

375
00:44:41,920 --> 00:44:48,720
question for this session I think, could you use Strava to perhaps plan the

376
00:44:48,720 --> 00:44:54,240
integration of the bicycle as transport in cities where the bicycle use is just emerging? So maybe a 377

00:44:54,240 --> 00:45:01,040
link back to this kind of covid restrictions and a lot more increase in people cycling in

378
00:45:01,040 --> 00:45:06,160
cities that don't have the infrastructure. Could Strava or something like that be helped to try...

379
00:45:08,080 --> 00:45:12,160
[Jin Hong] Yes, I think so because the first thing that you need to do is you need to understand the

380
00:45:12,160 --> 00:45:18,720
cycling patterns because there is reason why people use certain roads. But if you can know

00:45:18,720 --> 00:45:24,880
the whole picture at once, in a simple way, that will really help you to make a better plan.

382

00:45:24,880 --> 00:45:30,320
So yes, so that's another benefit of the Strava apps because that's available for everywhere

383
00:45:30,320 --> 00:45:36,080
in the world. So, you can, for example, there are some studies they're trying to find out,

384
00:45:36,080 --> 00:45:44,240
examine the cycling patterns in Africa where there's no real data and no infrastructure.

385
00:45:44,240 --> 00:45:50,320
But I think that's really one potential benefit of this kind of data. You

386
00:45:50,320 --> 00:45:56,560
can easily see the cycling patterns although there could be some bias, but you can easily see

387
00:45:56,560 --> 00:46:04,800
what roads are popular and why. [Muir Houston] That's great Jin, thank you very much. That's all of

388

00:46:04,800 --> 00:46:10,960
the questions for this session. Now I think we're going to have a break before the more

389

00:46:10,960 --> 00:46:20,800
practical session, so on my clock it's 10:55. If we say 11:15 we'll reconvene for the second

390
00:46:20,800 --> 00:46:28,000
session. So, thanks everyone for taking part. We'll return at 11:15 prompt for the next session and

391
00:46:28,000 --> 00:46:41,840
again, Jin will give a presentation and we can have another Q\&A session. So, thanks just now. [Jin Hong] Thank you.

392
00:46:48,560 --> 00:46:53,200
[Muir Houston] Hi folks, welcome back to everyone. I hope you've all joined us again

393
00:46:53,920 --> 00:47:00,960
as we start this second session, which is a more hands-on practical and

394
00:47:01,520 --> 00:47:07,840
how to work through some of the examples that Jin talked about in the

395
00:47:07,840 --> 00:47:15,680
earlier session. So, same as before - questions and answers in the tab and we'll take them

396
00:47:16,320 --> 00:47:23,360
again at the end. So, l'll just hand over to Jin again and thanks for joining us. [Jin Hong] Thank you.

397
00:47:24,000 --> 00:47:29,840
Thank you for everyone again, and in this session I will use R and the ArcGIS

398
00:47:29,840 --> 00:47:37,920
ArcMap to show you how to process the data and how the data looks like. Again, I'm using R-I don't

399
00:47:37,920 --> 00:47:44,480
know how much you know R, but if you don't have any idea about how about R

400
00:47:44,480 --> 00:47:50,400
try to understand the concept. The code and the data, all data, will be available on

401
00:47:51,440 --> 00:47:58,960
on your request. So, if you want to follow my code please request it through the

402
00:47:58,960 --> 00:48:06,320
Urban Big Data Centre website. And I hope you can also have a recorded version of this seminar.

403
00:48:06,320 --> 00:48:13,600
About the code, there are several ways to build a R code. So, I'm not saying that my code

404
00:48:13,600 --> 00:48:20,240
is the most efficient one, you can use your own code for the same purpose so that's

405
00:48:20,240 --> 00:48:27,840
something that I want to talk before starting. So, I hope you can all see my folder and

406
00:48:27,840 --> 00:48:35,200
R Studio and this is the data you will get if you request the data from UBDC.

407

00:48:35,200 --> 00:48:43,600
Glasgow 2016, January 1st to December 31st ride edges. That is the cycling data from Strava data.

408
00:48:44,320 --> 00:48:50,160
And this is the Glasgow city boundary. Why we need this one, I want to show you

409
00:48:50,160 --> 00:48:57,600
later. And if you look at the folder you will see this one, this is a spatial data.

410

00:48:57,600 --> 00:49:06,080
This includes all the spatial information for all edges - the link, the row, segment - of the Strava data

411
00:49:06,080 --> 00:49:12,800
and this is the data you will get. Whole Strava data depends on different levels of aggregation

00:49:12,800 --> 00:49:21,200
and this one is the hourly aggregation per each link, each edges, for example. So that is what

413
00:49:21,200 --> 00:49:25,360
we are going to use, and this is the data format that you will get. Then let's look at the

414
00:49:25,360 --> 00:49:34,480
data in detail. First the spatial data. This is ArcMap. You need a license to use it but you can

415
00:49:34,480 --> 00:49:41,440
download the QGIS for free and that's very similar. And you can do the same thing that

416
00:49:41,440 --> 00:49:50,800
I'm doing here in QGIS. So, if you want to follow my instruction then you can download the QGIS.

417
00:49:51,680 --> 00:50:00,720
First, so this is the one that I show you the data folder and see Glasgow shapefile. you need all

418
00:50:00,720 --> 00:50:09,600
this one, this data set to get the one shapefile. If you click one you see this one.

419
00:50:10,480 --> 00:50:16,480
That is the data from Strava. They use some secure boundary, and they clipped all the edge

420
00:50:16,480 --> 00:50:23,760
information and extract those Strava data. But if you look at this one in the attributes,

421
00:50:24,800 --> 00:50:28,960
right click attributes, this is the information that inside this shapefile.

422
00:50:28,960 --> 00:50:36,800
The spatial data there is id, so if I select one link

423
00:50:39,040 --> 00:50:47,040
it will be highlighted and if you look at the date on that one it's id is 747718.

424
00:50:47,040 --> 00:50:54,320
That is the id that we need to use to merge Strava actual data with this edge data.

425
00:50:54,320 --> 00:51:01,200
Because Strava data is Excel file a CSV or DBA file and then this is a special location of

426
00:51:01,200 --> 00:51:09,680
the edges. So, we need to merge them later. There are many information about the edges, the rows, segments

427
00:51:09,680 --> 00:51:16,080
and here is kilometres, which is the length of the edges. I want to make sure, because

428
00:51:16,080 --> 00:51:22,640
it depends on the map, but the length of the edges are different so we may need this

429
00:51:22,640 --> 00:51:28,880
information to calculate total cycling distance and the location of the edges. So, that is one.

430
00:51:31,600 --> 00:51:36,880
The thing is, you may not want to use all data sets, you may want to only the edges

431
00:51:36,880 --> 00:51:45,760
in a city. Right, that's possible. So, I download another data set which is

432
00:51:46,720 --> 00:51:53,520
Glasgow City boundary from the Scotland website.

433

00:51:55,520 --> 00:52:04,000
And I think you can get a link from UBDC about that. We will provide it if you

434
00:52:04,000 --> 00:52:10,800
request it. And if you look at this one, this is a city boundary of Glasgow.

00:52:11,520 --> 00:52:18,320
So, I want to only extract and select the edges inside the city boundary for the first purposes.

436

00:52:18,960 --> 00:52:25,520
And how can I do that? Here I use the clip function in analysis.

437
00:52:26,640 --> 00:52:33,680
So, if I click this one, you see this one, and input features I press Strava edge data.

438
00:52:35,280 --> 00:52:43,680
Right, and then clip features I put the city boundary data and then here I just define the

439
00:52:43,680 --> 00:52:50,960
name of my final result Glasgow clip shapefile. You can define

440
00:52:50,960 --> 00:52:58,560
the location and then put the name here. So, if I click here, ok, then what you've got is

441
00:52:59,520 --> 00:53:06,560
this data. You see there are the different colours, so I will only show that

442
00:53:06,560 --> 00:53:14,560
one. This is the final result. I only selected the edges inside the city boundary, and it has the

443
00:53:14,560 --> 00:53:23,440
exact same data. Right, ID and kilometres and x y coordinates, but I only selected the edges inside

444
00:53:23,440 --> 00:53:33,200
the City of Glasgow boundary. Ok, and then save as a Glasgow clip. So, if I look at my folder again,

445
00:53:33,920 --> 00:53:41,840
Glasgow clip, there's all different shapefile information and in DBF file that includes the data.

446
00:53:42,880 --> 00:53:52,160
Like this data, it's a DBA file. The same here, right. So now we know what edges are inside the

447
00:53:52,160 --> 00:53:59,680
Glasgow area, right, and then we will use the folder to process the

448
00:53:59,680 --> 00:54:08,800
data. So, I will close this one. That's all I need for ArcMap. So, this is R Studio.

449
00:54:08,800 --> 00:54:15,040
Everything is free, you can download it and then if you want to use the specific

450
00:54:15,040 --> 00:54:22,880
function in R you need to download and install the packages and then import the packages. And this is

451
00:54:22,880 --> 00:54:30,000
how I import the packages library. I need tidyverse and lubridate and others to process data.

452
00:54:31,600 --> 00:54:42,080
So, I run this one here. So first I import all the library and first in R I need to tell R

453
00:54:42,080 --> 00:54:48,480
where my data are stored, right. So, this is the folder.

454
00:54:49,760 --> 00:54:58,000
So, in the user my ID and Documents and 2020 Webinars Strava and Glasgow edges. That's the folder

455
00:54:58,640 --> 00:55:09,520
where my data are stored. So here, right this one. So, see this is the path of my folder and this

456
00:55:09,520 --> 00:55:18,000
is the one. So, I define in R where my data exists. So, I run this one and now the R knows where

457
00:55:18,000 --> 00:55:28,960
my data are and I use read CSV to import the data. Again, this CSV file is hourly aggregation

458
00:55:28,960 --> 00:55:39,920
of the Strava activities. And then I saved it as Strava, right. I did it very quick. And then

459
00:55:39,920 --> 00:55:47,840
let's look at what information are in the Strava data. So, I use the summary function here.

460
00:55:49,680 --> 00:55:56,320
And see here, first there are almost 2 million observations. That's a lot, right?

461
00:55:56,320 --> 00:56:02,000
2 million observations here. And there are 14 variables. What are the 14 variables?

462
00:56:02,000 --> 00:56:09,600
This is the 14 variables inside the Strava. Edge ID - it's not ID it's Edge ID, so we need to,

463
00:56:09,600 --> 00:56:16,480
if we want to merge this spatial data with this Strava count data we use the ID from the

464
00:56:16,480 --> 00:56:22,880
shapefile and also Edge ID from the Strava because they are the same. It has year

465
00:56:23,600 --> 00:56:34,080
2016 and day 1 to 366 because there are 366 days in 2016 . Hours 1 to 23 , so one day

466

00:56:34,720 --> 00:56:42,400
and then minutes and athlete count is the number of Strava users on their roads at a particular time.

467
00:56:43,200 --> 00:56:47,920
And reverse means there are two directions on the roads, so they have a two direction

468
00:56:47,920 --> 00:56:55,760
one. And activity count is a cycling trip, number of cycling trips on that edge. And the reverse is

469
00:56:55,760 --> 00:57:02,000
again, there are two directions. And total is the sum of this one and this one for the activities.

470
00:57:02,000 --> 00:57:06,640
And then activities is the sum of activity count and reverse activity counts, that's the one.

471
00:57:07,680 --> 00:57:14,400
There's time information, also commute count. There in the app you can, after you finish

472
00:57:14,400 --> 00:57:19,840
your whole journey, you can indicate whether this is a commuting trip or not. So, if they indicate as

00:57:19,840 --> 00:57:24,160
commuting, this is the information about the commuting count and that is the

474

00:57:24,160 --> 00:57:32,720
information we can use to separate commuting and non-commuting trips. I hope this makes sense. And then

475
00:57:34,960 --> 00:57:42,640
I will first here, but as I said this Strava data includes all Strava activity data for

476
00:57:42,640 --> 00:57:49,440
all edges with what we first see, so it takes a little time.

477
00:57:50,560 --> 00:57:56,880
So, this one, right, Strava data includes all the edge information.

478
00:57:58,800 --> 00:58:06,400
This one. So, what I need to only select the edge information, the Strava activity

479
00:58:06,400 --> 00:58:13,760
information, from edges that are inside the Glasgow boundary. So how can I do that? Here

480
00:58:14,400 --> 00:58:26,160
I read the DBA file so Glasgow clip 1 DBF. So that actually gives us all the ID of the

00:58:26,160 --> 00:58:33,680
edges which are within the Glasgow boundary. Does it make sense? So those are the edges inside the

482
00:58:33,680 --> 00:58:41,520
Glasgow boundary and this is the function, this is the command.

483
00:58:41,520 --> 00:58:48,240
I use the Glasgow data and then only select the ID and kilometres, the length of the edges,

484
00:58:48,240 --> 00:58:54,560
because that's the only information that I need from the spatial data. And I use this data

485
00:58:55,840 --> 00:59:00,560
and the inner join, use inner join. What is the inner join? There are different types of join but

486
00:59:00,560 --> 00:59:09,120
inner join means you only keep the data set that matched. So here I joined the data,

487
00:59:09,680 --> 00:59:18,000
the Glasgow clip data, ID and the Strava data - this one. The excel file,

00:59:18,000 --> 00:59:27,280
the CSV file by using ID from the Glasgow file, which is a shapefile, and Edge ID from the Strava data.

489
00:59:28,400 --> 00:59:35,840
So, I did it and inner join means only keep the observation that are matched. So

490
00:59:35,840 --> 00:59:43,120
I did it and Glasgow Strava you see now we have 1.4 million observations because we removed all

491

00:59:43,120 --> 00:59:52,160
the counts beyond the edges beyond the Glasgow city area.

492
00:59:53,440 --> 00:59:56,000
Is it clear, yeah? It's a little bit

493
00:59:56,640 --> 01:00:01,520
hard to see your faces, I cannot see your faces so it's very hard to see whether you understand

494
01:00:01,520 --> 01:00:07,920
it or not but I will keep doing that. We can have a Q\&A session later. So now we have all the

495
01:00:08,480 --> 01:00:16,080
the cycling activity data, Strava data for edges within the Glasgow city boundary. I want to see

496
01:00:16,080 --> 01:00:23,520
the travel patterns, cycling patterns, and I also want to check the quality of the data by producing

497
01:00:23,520 --> 01:00:30,320
a map. If we produce a map, we can easily see whether the numbers, the data, makes sense or not.

498
01:00:30,960 --> 01:00:38,160
So, to do that, first thing, what I did here is I calculated the total count per edges

499
01:00:38,160 --> 01:00:47,760
for a whole year. The total annual counts per edges, road segments. Here I use the Glasgow Strava data here

500
01:00:48,320 --> 01:00:57,280
we joined it, right, and then group by ID. The reason is I want to calculate total cycling distance

501
01:00:57,280 --> 01:01:06,160 per ID per edge. So that's the thing I need to first group them by ID and then use summarise

502
01:01:06,160 --> 01:01:15,040
function to calculate sum of, here I use the total activity count, the total count, number of cyclists,

01:01:15,760 --> 01:01:23,600
cycling trips, and multiply by the length of the edges. Why I want to calculate the cycling distance,

504
01:01:23,600 --> 01:01:29,360
total cycling distance, and that's all, again the reason is the length of the edges are

505
01:01:29,360 --> 01:01:35,520
different, so if we just use a total cycling count, they may be a little bit confusing.

506
01:01:36,320 --> 01:01:43,600
So, we calculate the sum of this total activity count multiplied by km,

507
01:01:43,600 --> 01:01:51,360
kilometres, and then save it as the total distance and we calculate this total distance by each

508
01:01:51,360 --> 01:02:01,200
ID, each edges. So, I did it and then save it as a total count. So, let's look at the total count,

509
01:02:02,640 --> 01:02:17,280
So, Edge ID 105, the total cycling distance is 192 kilometres or 106 it's 494 . So, we calculate total

510
01:02:17,280 --> 01:02:25,600
annual cycling distance by each edge, right. That's what I will do, what I do here. Then

01:02:26,160 --> 01:02:33,920
I want to show this total distance in a map. Then I can see where are the popular roads

512
01:02:33,920 --> 01:02:40,960
where other kinds of cycling, where the cycling activities happen, right. So, to do that

513
01:02:40,960 --> 01:02:47,440
I want to import the shapefile. It can be possible; you can use R to import the shapefile and 514

01:02:47,440 --> 01:02:54,640 produce a map in a nice way. To do that I need these two libraries, ggmap and sf.

515
01:02:54,640 --> 01:03:06,160
So, I imported it. They are here. Here I import the Glasgow clip shapefile. What is that? That is,

516
01:03:07,600 --> 01:03:15,520
again, it takes time to see the ArcMap. This data. Glasgow clip shapefile, this one. I imported

517
01:03:15,520 --> 01:03:26,480
it in R by using st_read, right. And so, I imported that data and then use

518
01:03:28,640 --> 01:03:35,920
inner join with total count. Total count includes the ID and then total cycling distance.

519

01:03:35,920 --> 01:03:40,000
This includes all the edge information inside the Glasgow boundary.

520
01:03:40,560 --> 01:03:47,040
Right? So, I merge these two and then save as a edge. So, I did it.

521
01:03:49,440 --> 01:04:00,240
So now I have edge data. Here there is 11,000 observations, the edges. And to import the base map

522

01:04:00,800 --> 01:04:09,120
we need to use st_bbox and edge which is the data set that we saved. We need to use the same coordinate

523
01:04:09,120 --> 01:04:14,640
system with edges. Inside the shapefile there's information about all the coordinate systems

524
01:04:14,640 --> 01:04:21,840
and the locations, right. And we need to define the boundary and to define the boundary we

525
01:04:21,840 --> 01:04:31,040
need to use st_bbox. So, we do that and if we see what is inside, it gives the four values about

01:04:31,040 --> 01:04:38,400
the boundary. To use the get_map function we need to change the column name as a left, bottom, right,

527

01:04:38,400 --> 01:04:45,840
top, that isn't fixed. So, if you do that and then see what happened, xmin changed the

528
01:04:45,840 --> 01:04:53,360
left, ymin changed the bottom. So, we changed it. This is required if we want to use a get_map function.

529
01:04:53,360 --> 01:05:02,080
And now I want to get the base map and save it as a Glasgow map. So, this is what I'm doing.

530
01:05:04,640 --> 01:05:08,080
Now I have a base map. You cannot see, because I didn't

531
01:05:08,080 --> 01:05:11,760
command the print, right. So, let's do it here.

532
01:05:14,400 --> 01:05:22,320
ggmap is how you print the map, so I said print the Glasgow base map

533
01:05:22,320 --> 01:05:29,360
here and then data is edges, this is the data, in data we have all the information of

534

01:05:29,360 --> 01:05:36,320
edges and then total count because we merged them. Total distance, cycling distance. I want to

535
01:05:36,880 --> 01:05:43,680
show the graph, each edges, but the thickness can change, the size can change depending on the

536
01:05:43,680 --> 01:05:50,480
total travel distance, cycling distance, right. So, we see if it's thicker then it means there are

537
01:05:50,480 --> 01:05:56,880
high levels of cycling activities. For the colour we use the Sienna1. You can change it

538
01:05:56,880 --> 01:06:04,560
to the black, blue, red, whatever you like, right. Scale size, for the travel

539
01:06:04,560 --> 01:06:12,640
total distance we need to define the breaks for the values, so we use 10, 50, 100, 150. I

540
01:06:12,640 --> 01:06:20,160
will show you what it means, and range is 0.123 . You can change it. This defines the thickness of the
breaks, depends on the breaks. And then we put the label, the title is total annual counting 542

01:06:26,720 --> 01:06:31,840
distance per edges and size is kilometres. Let's see what happens if we run this one.

543
01:06:36,240 --> 01:06:45,120
You see this nice graph. So, I will enlarge the plots. So, this is the kilometres our dependent

544
01:06:45,120 --> 01:06:55,120
variable and this is the breaks we defined - 10, 50, 100, 150 - and that has a different

545
01:06:55,120 --> 01:07:03,840
size, right. That's what we have here. And we use the sienna, this is a colour called Sienna1 and

546
01:07:03,840 --> 01:07:10,400
that's the graph. We see the river and we see a lot of cycling activities

547
01:07:10,400 --> 01:07:17,920
alongside the river and here. As you may remember in the previous session, we have this area and this

548
01:07:17,920 --> 01:07:22,640
area has a really nice cycling infrastructure, good cycling infrastructure and it totally makes

549
01:07:22,640 --> 01:07:28,800
sense. It's not hilly, it's very flat. And see the city centre there are quite

550
01:07:28,800 --> 01:07:34,880
good levels of activities. And then for whole real main roads there are some activities there.

551
01:07:34,880 --> 01:07:41,520
So, this shows that, oh yeah, the data looks reasonable and that's what we expected and that's the

552
01:07:41,520 --> 01:07:53,760
easiest way to see the travel patterns in your city, right. So that's what we did here. So, if we

553
01:07:53,760 --> 01:08:00,720
want to change the key variable you can change it here. It depends on your research but then now

554
01:08:02,800 --> 01:08:08,720
the main analysis that I'm going to do here is I want to examine the relationship

555
01:08:08,720 --> 01:08:15,920
between weather conditions and cycling activities, right. The relationship between weather conditions

556
01:08:15,920 --> 01:08:22,240
and cycling activities. So first I need to process, I need to calculate total cycling distance

557
01:08:22,240 --> 01:08:29,120
but for different purposes because covering cycling distance activities could be different

558

01:08:29,120 --> 01:08:35,760
from the non-commuting cycling patterns, right. So, we do that. How we do that? We want

559

01:08:35,760 --> 01:08:41,200
to calculate the total cycling distance per day because if we want to examine the

560
01:08:41,200 --> 01:08:48,240
relationship between weather conditions and the cycling activities we need to make our analysis

561
01:08:48,240 --> 01:08:55,760
unit as hourly or daily. But we decided to use daily here because weather changes by

562

01:08:55,760 --> 01:09:06,080
daily. So here I create total cycling data set but they use the Glasgow Strava data, which is this one,

563
01:09:06,080 --> 01:09:14,160
right. All the edge informations are there and also the activity Strava data, raw data. We now group

01:09:14,160 --> 01:09:21,360
by day because we want to calculate total cycling distance per day. So that's what we are doing here.

565
01:09:21,920 --> 01:09:29,440
and we use the summarise function to calculate total activities, means sum of total activity count

566
01:09:29,440 --> 01:09:37,040
multiplied by kilometres. So that's total cycling distance. For the commuting activities we use

567
01:09:37,040 --> 01:09:44,560
commuting count, right. In the Strava data we see there was committing count if the users tick

568
01:09:44,560 --> 01:09:53,440
this trip as commuting. And then kilometre again, the length of edges. For the non-commuting

569
01:09:53,440 --> 01:10:00,560
activities then how can we calculate, we can use the total activity count minus commuting count.

570
01:10:00,560 --> 01:10:07,200
That is the full non-commuting count, right, multiplied by kilometres. So then saved edge is

571
01:10:07,200 --> 01:10:14,560
non-commuting activities. So, this total activity means total cycling distance per day,

572
01:10:16,080 --> 01:10:24,880
right. So, we do that and let's see what is inside the total cycling data.

573
01:10:26,320 --> 01:10:33,680
See there is days 1 to 366 . It's omitted, it

574
01:10:33,680 --> 01:10:44,240
just shows the first six rows and total activities in day one there is only 886

575

01:10:44,240 --> 01:10:51,120
kilometres. And for commuting none, because it's a new year, right. No one will

576
01:10:51,680 --> 01:10:58,320
work there at the time. And non-commuting there are some people. So, we calculate total

577
01:10:58,320 --> 01:11:05,840
cycling distance for commuting and non-commuting by day. Here,

578
01:11:07,440 --> 01:11:13,840
later, I want to use a nice graph and plot the date in a proper way, so I use

579
01:11:13,840 --> 01:11:21,520
as date function. By using this variable, so total cycling data,

580
01:11:21,520 --> 01:11:27,920
that's inside, there is a day variable and we use minus one because that's how we define the

581
01:11:27,920 --> 01:11:36,560
use the as date to match with this format. So, if I run this one, this command, what happens is

582

01:11:37,760 --> 01:11:44,880
let's look at the data again - it has a date! It's a nice format - year, month, and day.

583
01:11:45,440 --> 01:11:53,360
So, day one is January 1st, day 2 is January 2 nd. So that's a very easy way to change the format

584
01:11:53,360 --> 01:12:03,600
from day to date. And here, let's do the sum. So, I calculated

585

01:12:03,600 --> 01:12:11,280
all the cycling distance, total distance, and then I want to check whether the data looks okay.

586
01:12:11,280 --> 01:12:17,600
There are many ways, but this is one way. Just do the summary and then let's look at

01:12:17,600 --> 01:12:26,560
the total activities which means total cycling distance by daily and the mean is 2,500

588
01:12:26,560 --> 01:12:34,880
kilometres for whole area but max is almost 10 times. That is weird. That's too large.

589
01:12:35,600 --> 01:12:45,520
Then there could be some issue. So, what I'm doing here is I just want to see which date. So

590
01:12:45,520 --> 01:12:53,520
using the total cycling data, and if the total cycling data, the total activity is greater than 23,000

591
01:12:53,520 --> 01:13:03,920
just plot them. That's what it is, what this command means. So, we run it and we have day

592
01:13:04,800 --> 01:13:13,120
255 and that is September 11th. And I googled it, what happened in Glasgow

593
01:13:13,120 --> 01:13:18,560
on September 11th and there was an annual Glasgow to Edinburgh bike ride event

594
01:13:18,560 --> 01:13:25,040
on that day. So that is an exceptional date and for the analysis it's better to remove it. So here

595
01:13:26,880 --> 01:13:34,400
I use the total cycling data, the same data, and filter so only select

596
01:13:34,400 --> 01:13:40,000
if the total activity is less than 23,000 . So, if I do that

597
01:13:42,560 --> 01:13:52,400
now to the summary again, the max is $10 k$. You know, it's kind of better, much better, right. You

598
01:13:52,400 --> 01:13:57,520
can do more, if you are using the Strava data for your cities you can do more investigation.

599
01:13:57,520 --> 01:14:04,400
But I think that's okay for this tutorial. So now I process the data, I check the data,

600
01:14:04,400 --> 01:14:10,960
whether there are errors or exceptional days. And then I want to see the trend of the data

601
01:14:10,960 --> 01:14:17,520
because each time series data is 1 to 366 . So, I want to see the trend of the whole activities.

602
01:14:18,320 --> 01:14:24,160
Here, I calculate the moving average. This is a good measure for showing the trend of the data.

603

01:14:24,160 --> 01:14:29,440
If we use the raw data there will be a lot of spikes, so that is very hard to see.

604
01:14:29,440 --> 01:14:36,080
But if you use the moving average it's nicer. Moving average means you average the whole past

605
01:14:36,080 --> 01:14:43,040
seven days and use that average as your value. So, I actually find this code from

606
01:14:43,040 --> 01:14:47,760
online, I mean there are a lot of R codes you can just google it if you don't know how to do it.

607
01:14:48,640 --> 01:14:54,800
So, this is how we make a function to calculate moving average. I will briefly explain here the

608
01:14:54,800 --> 01:15:00,880
concept. So, this is the new variable that we are going to create, and this is the loop function.

609
01:15:00,880 --> 01:15:08,960
So, let's assume that the i is the seventh of January, right.

610
01:15:08,960 --> 01:15:16,640

Then the variable, this variable, the value will be the mean of activity which we'll define later as a

611
01:15:16,640 --> 01:15:24,400
travel or total travel cycling distance or commuting cycling distance. i minus n, let's see,

612
01:15:24,400 --> 01:15:34,400
i we said it's 7 and n equals, what, six. We already predefined it, so it becomes 1 and i becomes 7 .

613

01:15:34,400 --> 01:15:41,040
So, what it means is, this function means, let's make a mean of activity your variable 1 to 7 .

614
01:15:41,680 --> 01:15:48,400
So past seven days you use that variables, that values, and then calculate the mean

615
01:15:48,400 --> 01:15:57,680
and put the value here. The seventh value of the average variable. Does it make sense? Yeah that is

616

01:15:57,680 --> 01:16:04,320
what I'm doing here. So, I calculate, I create ma function, moving average function, and

617
01:16:04,320 --> 01:16:12,560
here what I'm doing is use this ma function that I create and then use total cycling distance

01:16:12,560 --> 01:16:18,880
total cycling distance for commuting purposes and non-commuting purposes. This is the variables.

619
01:16:19,440 --> 01:16:27,120
and use this function and calculate moving average and save as a ma total, ma commuting

620
01:16:27,120 --> 01:16:35,760
and ma non-commuting, right. And use mutate. Mutate is a function that when I want to make new variables.

621

01:16:36,960 --> 01:16:44,400
So, I use the total cycling, again the final dataset we processed here and then save as

622
01:16:44,400 --> 01:16:50,880
total cycling again. So, I don't want to make a different data set, I want to keep this original

623

01:16:50,880 --> 01:16:58,800
one and adding more. So, when I do that, see what happens.

624
01:16:58,800 --> 01:17:05,760
This command just shows me the first 10 observations and this one. They want total

625
01:17:05,760 --> 01:17:10,960
activities, commuting activities, non-commuting activities, that's what we have. And date, that's

626

01:17:10,960 --> 01:17:19,360
what we originally have, right. Now there is a new variable ma total ma commuting and I think

627
01:17:19,360 --> 01:17:25,280
because the size is so small it doesn't really produce the other one but let me do it again.

628
01:17:28,400 --> 01:17:35,280
Yeah, so the ma non-commuting, so this is the moving average. So, look here

629
01:17:36,480 --> 01:17:38,240
there is no change until

630
01:17:40,720 --> 01:17:48,320
five, fifth observation. Because if you look at this one if, for example, i equal 5 then this is 5 minus

01:17:48,320 --> 01:17:57,200
6 because 6 is predefined it's -1 . I cannot really calculate this number so when it becomes greater

632
01:17:57,200 --> 01:18:03,920
than or equal to zero it calculates the moving average. So, this moving average is the average of

633
01:18:05,840 --> 01:18:14,080
this. Seven [counts] actually six values. If you average this one there will

634
01:18:14,080 --> 01:18:22,480
be this number. You can check it later, I already did it. So, we calculate the moving average

635

01:18:22,480 --> 01:18:28,800
and also, we have raw data, raw total cycling distance and total cycling distance for commuting

636

01:18:28,800 --> 01:18:35,520
and non-commuting. That's the data we processed. Here I want to show the trend. I

637
01:18:35,520 --> 01:18:42,800
want to make a graph that's showing the trend. So, I use the data that we've just processed. One problem

638
01:18:42,800 --> 01:18:51,360
is, I want to see the whole three information - total travel cycling distance, total commuting and

639
01:18:51,360 --> 01:18:56,560
non-commuting and also moving average for total commuting and non-commuting. But that's very hard

640
01:18:56,560 --> 01:19:03,680
because the current format has, for example, these three different columns. If you look

641
01:19:03,680 --> 01:19:12,160
at the graph plot, the y, there's only one variable, right, so that's very hard. This format, we call it

642
01:19:12,160 --> 01:19:20,800
a wide format. Through the nice graph you need to transform this wide

643
01:19:20,800 --> 01:19:27,200
form to the long form. So how can we do that? It's very confusing, right, just hold on I will explain.

644
01:19:27,200 --> 01:19:36,400
This is a function that we can change the format. So here, column 2:4 means I only use the column

645
01:19:37,120 --> 01:19:43,760
2 total activities, commuting activities and non-commuting activities. 2, 3, 4.

646
01:19:44,480 --> 01:19:52,160
And then use the names to activity type, create new variable activity type and put the value as a

647
01:19:52,160 --> 01:19:58,720
total distance. This is a new name of the variable, but I only use these three columns. So

648
01:19:58,720 --> 01:20:11,040
let's see what happens if I just run this code. Now see this one. Now it's the same but for one day,

01:20:12,160 --> 01:20:19,040
January 1st, there are three rows, and each row has activity time, a type

650
01:20:19,040 --> 01:20:26,320
as a total commuting and non-committing. And the total distance here is the value

651
01:20:26,320 --> 01:20:38,720
of the original value 886 here, 0 here and 886 again here. So, I change the wide format to the long

652

01:20:38,720 --> 01:20:45,840
format. So, we have one key variable - total distance - and we know activity type, different activity type.

653
01:20:47,600 --> 01:20:54,880
Does it make sense? And we use the ggplot to plot the trend. x is a date

654
01:20:55,760 --> 01:21:06,240
1 to 366 and y is the total distance. And then we said oh let's print the points, each value,

655
01:21:07,040 --> 01:21:12,720
but the shape changed by activity type and the colour changed by activity type because for

01:21:12,720 --> 01:21:19,120
the activity types we want to have a different shape and colours, right. And then this is the label

657
01:21:20,160 --> 01:21:27,440
and again, scale bar the x axis is a date and I want to have this format -

658
01:21:27,440 --> 01:21:37,680
year, month, and day. That's a nice format. And geom_line means let's connect all the points by line.

659
01:21:38,800 --> 01:21:45,360
So, I will show you the final results, that's better to understand, for your understanding. So

660
01:21:45,360 --> 01:21:51,680
I just use the raw data, not a moving average, and this is what it is. The total commuting activities, it has

661
01:21:51,680 --> 01:21:59,200
a blue colour and square shape because we define here, right, different colour and different shape.

662
01:21:59,200 --> 01:22:05,680
And it has this pattern. The non-commuting green and triangle and commuting activities

663
01:22:05,680 --> 01:22:12,240
red and circle. So, we have a different shape for different activity type and also the colours.

01:22:13,040 --> 01:22:18,000
See kind of seasonality impacts. There are low levels of cycling activities

665
01:22:18,000 --> 01:22:27,520
during the winter, here, but high activity levels during the spring, summer, and autumn.

666
01:22:27,520 --> 01:22:32,640
There are some decreases because I think this is because of the holidays - there are

667
01:22:32,640 --> 01:22:39,360
not many students here. Also, people are taking their holiday. Again, this is not really easy to

668
01:22:39,360 --> 01:22:46,640
see the trend, so I use the moving average. It's the same command but I use now column six

669
01:22:46,640 --> 01:22:54,160
to eight because that's the moving average that we calculate $1,2,3,4,5,6$ so six, seven

670
01:22:54,160 --> 01:23:00,800
and eight, right. And the same thing, it's exactly the same code. So, if I do that

671
01:23:03,840 --> 01:23:11,040
you see a much nicer trend, right. That is a reason why people use the moving average. You can 672

01:23:11,040 --> 01:23:16,160
ignore this part because that's not really moving average. So, this is moving average. You can see the

673
01:23:16,160 --> 01:23:23,600
seasonality impacts and also kind of variations because it's weekdays and weekends.

674

01:23:23,600 --> 01:23:28,880
Also, weather can be the factors why there are such a big variation.

675
01:23:31,200 --> 01:23:38,080
So now we have processed the Strava data. We know we have all the total cycling

676
01:23:38,080 --> 01:23:45,680
distance, cycling distance for commuting trips and non-commuting trips by day. So, we processed data

677
01:23:46,320 --> 01:23:52,480
Now we need weather data, right, so then we can build a model to see the relationship between

678
01:23:52,480 --> 01:24:03,920
weather conditions and the cycling activities. So, there are two data sets that you can use. One is you can

679

01:24:03,920 --> 01:24:10,000
get your data from your local weather stations, that could be more comprehensive.

680
01:24:10,000 --> 01:24:16,640
But if you don't have it you can use these two libraries to obtain the weather data for your city.

681
01:24:18,400 --> 01:24:25,360
So first I want to calculate the length of day because, again, the length of day is very important

682
01:24:25,360 --> 01:24:32,880
for cycling activities and in Glasgow the length of the day changes significantly compared

683
01:24:32,880 --> 01:24:44,000
to winter and summer. So here I make sunlight data. First, I define

684
01:24:44,000 --> 01:24:51,360
the data frame the date. We need to ask them what date we need the data and then the location.

685

01:24:51,920 --> 01:25:00,720
So, I use the total cycling date information that includes the 2016 January 1st to 2016 December

686
01:25:00,720 --> 01:25:08,000

31st and then put as a date. So that's a data frame as in the data frame there's a date

687
01:25:08,000 --> 01:25:14,480
variable, which is defined like this one and we put the latitude and longitude of our city area.

688
01:25:14,480 --> 01:25:19,600
How can you do that? If you just google it, your city, Google will show you the latitudes and

689
01:25:19,600 --> 01:25:25,840
longitudinal information, you choose information, so you can just type it. That is our data

690
01:25:26,480 --> 01:25:34,720
and we use getSunlightTimes function to get the sunrise and sunset time, right. That's what

691
01:25:34,720 --> 01:25:41,680
we do here. And we mutate length of day as the difference between the sunset and sunrise.

692
01:25:43,040 --> 01:25:50,320
Then we can estimate the length of the day and we rename day date as a date no time because

693
01:25:50,320 --> 01:25:56,960
sometimes date has its own function, so it can be confusing, but it's not really necessary. And then

01:25:56,960 --> 01:26:04,640
we have a day; we want to have a day like 1 to 366 because it's easy to

695
01:26:04,640 --> 01:26:09,840
use for merging other data set by using date no time. Date no time now is

696
01:26:10,400 --> 01:26:18,000
January 1st, something like that. So, if we do that and let's look at the data.

697

01:26:21,680 --> 01:26:29,200
and this is the date no time. It's 2016 January 1st and this format, we have latitude and

698

01:26:29,200 --> 01:26:35,520
longitude information, sunrise information, sunset information. We have length of days, seven

699
01:26:35,520 --> 01:26:42,960
hours it's been increased, and day 1 to 366, that's what we are doing here. So now we calculate

700
01:26:42,960 --> 01:26:54,640
the length of the day for 2016. Now we need to get more detailed weather data, like precipitation,

701
01:26:54,640 --> 01:27:02,720
like wind speed and temperature. How can we do that? We can use the getMeta function to get

702
01:27:02,720 --> 01:27:09,120
station information for your cities. So here I also put the latitude and longitude for Glasgow

703
01:27:09,680 --> 01:27:20,560
and then get the metadata inside the code. We see different stations, it takes time, so

704
01:27:20,560 --> 01:27:29,040
these are the stations, weather stations in Glasgow. And you can use the code to select the 705

01:27:29,040 --> 01:27:37,680
station. Here we select Prestwick, the weather data, weather station

706
01:27:37,680 --> 01:27:46,560
in Prestwick Airport. The reason is it has a list missing value so we use that code, so we use

707
01:27:46,560 --> 01:27:53,680
import NOAA function. We define the station and then we set each year to 2016

708
01:27:53,680 --> 01:28:03,840
and only select date, wind speed, air temperature, precipitation, right. And the mutate date no time

709
01:28:03,840 --> 01:28:13,840
again as a date, which means 1 to 366 and then hour of day. That's what we do here.

710
01:28:16,160 --> 01:28:20,400
So, we only select wind speed, air temperature and precipitation.

711
01:28:22,640 --> 01:28:30,960
And then I look at the weather data plus three here, you see this is the wind speed,

712

01:28:30,960 --> 01:28:38,800
air temperature, precipitation, date no time and hour of day 0 to 23 , right. That's what we

713
01:28:38,800 --> 01:28:46,080
are doing here. So now we have all the weather data and rather than

714
01:28:46,080 --> 01:28:54,000
using the original data set, we want to have a mean temperature, max temperature, and some of the

715
01:28:54,000 --> 01:29:00,160
whole precipitation level and min wind speed and max wind speed because that's the more important

716
01:29:00,160 --> 01:29:09,840
determinants of the cycling activities and that's what we do here. So here if we look at the

01:29:11,440 --> 01:29:18,800
weather daily, we calculate the mean temperature, max temperature based on the original data set.

718
01:29:20,720 --> 01:29:24,400
I think that's straightforward.

719
01:29:25,200 --> 01:29:32,560
Then we have weather condition data, and we have length of day data. The next one is we need to

720
01:29:33,360 --> 01:29:40,400
merge these two data sets so we can have full weather condition data. So how can I do that?

721
01:29:40,400 --> 01:29:46,000
I have weather daily data, which is the final data set for weather, and sunlight data

722
01:29:46,000 --> 01:29:56,080
where I calculate the length of the day and both of the data sets has a day 1 to 366 .

723
01:29:57,280 --> 01:30:05,840
So, we use that variable to merge these two data sets. And now I have a final weather data set.

724
01:30:08,320 --> 01:30:15,520

It says all the mean temperature, max temperature, precipitation, min wind speed, max wind speed,

725
01:30:15,520 --> 01:30:22,320
latitudes, longitudes, and length of day. So that is my whole weather data.

726
01:30:23,120 --> 01:30:33,200
Now what I need to do is merge this weather data with cycling data. In the total cycling data set

727
01:30:33,200 --> 01:30:40,480
we already calculated this total cycling distance for commuting and non-commuting and also overall

728
01:30:40,480 --> 01:30:50,160
total. We arrange it by day because we want to order the

729
01:30:50,160 --> 01:30:59,200
data set by day. And then use inner join, same thing, we merge weather data and this Strava data

730
01:30:59,840 --> 01:31:06,880
and then merge them. But before I do that, I want to make sure we have for the weather data

731
01:31:08,320 --> 01:31:20,560
we have 362 days because there are some missing values, right. So, we do that and

01:31:20,560 --> 01:31:26,560
then for cycling we have all the information. We have total activity, which represents

733
01:31:26,560 --> 01:31:33,600
the total cycling distance per day and the commuting cycling distance and non-commuting cycling distance,

734
01:31:34,480 --> 01:31:41,920
right. And all the weather condition data, that's what we have. So that is the final stage. We have

735
01:31:41,920 --> 01:31:48,240
all the data processed, now we want to see the key dependent variable, how they are distributed.

736
01:31:48,240 --> 01:31:54,560
So here I plot the key dependent variables. Total activities,

737
01:31:55,120 --> 01:31:59,760
again, total cycling distance, total cycling distance for commuting and non-commuting.

738
01:32:00,720 --> 01:32:07,040
They are skewed, that's general, right. So, if we want to use some kind of regression model it's

739
01:32:07,040 --> 01:32:13,840
better to make as a normal. So, we took here the square root, we take the square root transformation

740
01:32:14,480 --> 01:32:23,280
of the key dependent variable and then see how it looks. Yeah, this one and this one

741
01:32:23,280 --> 01:32:28,880
is much better. For the commuting still it's not really ideal, so you need

01:32:28,880 --> 01:32:34,480
more investigation if you want to conduct a proper analysis.

743
01:32:34,480 --> 01:32:41,600
But for this tutorial let's just go with it. So here, although this is the time series data

744
01:32:42,400 --> 01:32:48,880
so the observations could be correlated, we assume that they are independent. So let's

745
01:32:48,880 --> 01:32:55,040
just run the linear regression model, which means that we

746
01:32:55,040 --> 01:33:01,440
assume that all observations are independent. And this is the square root of the total activities,

01:33:01,440 --> 01:33:08,560
is our dependent variable and this is all our weather condition variables, right. We do that 748

01:33:09,760 --> 01:33:17,760
and print the result. We see four weather conditions have very

749
01:33:17,760 --> 01:33:24,080
significant relationship with level of total cycling activities, cycling distance.

750
01:33:24,640 --> 01:33:32,160
So, precipitation has a negative relationship. It means if the level of precipitation

751
01:33:32,160 --> 01:33:40,000
increases, more rain, the activity level will decrease, that's what it means. Max temperature

752
01:33:40,000 --> 01:33:45,840
increases the level of cycling activities. It makes sense because in Glasgow

753
01:33:45,840 --> 01:33:53,680
max temperature even in summer is not really that high. Max wind, if the wind speed is high

754
01:33:53,680 --> 01:34:00,160
there are fewer cycling activities. That totally makes sense. Length of day, if the length of

755
01:34:00,160 --> 01:34:06,240
day increases, the total cycling distance increases and that also makes sense. These are all consistent

756
01:34:06,240 --> 01:34:14,400
with previous studies, right. I want to check the model result and then see the residual

757
01:34:15,200 --> 01:34:20,800
path from the model to check the model assumptions because linear regression model,

758
01:34:20,800 --> 01:34:27,680
there are several assumptions. And it looks ok, actually, there are not many clear patterns and

759
01:34:27,680 --> 01:34:36,400
then normal ggplot looks ok. However, again, there could be an auto correlation issue and then to

760
01:34:36,400 --> 01:34:44,960
test auto correlation between observation we did a Durbin Watson Test. And then see there are

761
01:34:44,960 --> 01:34:51,040
several lags that have a p-value less than 0.05 , which means there are auto correlation

01:34:51,040 --> 01:35:00,080
issues. In that case you need to use time series data. So here I used auto arima function

763
01:35:00,080 --> 01:35:06,320
to use the time series models and then to do that I need a library forecast.

764
01:35:09,520 --> 01:35:15,920
And this is the result. You don't have to worry about this other extra coefficient that's about

765
01:35:15,920 --> 01:35:23,600
the time series coefficient. But this one, if you can compare the estimate this one with

766

01:35:23,600 --> 01:35:29,200
the previous one. And what we found is very consistent. Although there are some differences

767
01:35:29,200 --> 01:35:35,840
in terms of magnitudes, the level of significance and also the signs are very consistent so we can

768
01:35:35,840 --> 01:35:41,520
conclude that yes there are significant relationships between weather conditions

769
01:35:41,520 --> 01:35:48,320
and cycling activities, total cycling activities. If you want to examine the commuting

770
01:35:48,320 --> 01:35:54,480
cycling distance and non-commuting cycling distance, you can just change this variable, right, and that's

771
01:35:54,480 --> 01:36:02,880
the same. I checked the assumption of the time series model, but I still see some of the problems.

772
01:36:02,880 --> 01:36:07,360
This is beyond this tutorial, so I don't want to talk about the models but

773
01:36:07,360 --> 01:36:14,160
as a researcher you may want to try other approaches to fix the auto correlation issues. So

774
01:36:15,040 --> 01:36:21,520
sorry for the long tutorial. I think it's a little bit hard to explain without your reactions but I

775
01:36:21,520 --> 01:36:28,400
hope you can get something from my tutorial. Again, this code will be available based

776
01:36:28,400 --> 01:36:35,600
on your request. So, if you need this code and data please do apply through the UBDC website. Thank you

777
01:36:35,600 --> 01:36:42,240
very much. [Muir Houston] And thank you very much for that Jin. We only have a couple of questions. One of them

778
01:36:42,240 --> 01:36:48,960
was about the code, so you've answered that one already. One more question, when you correlate

779
01:36:48,960 --> 01:36:57,120
Strava with cordon did you use the Strava edges or the Strava nodes in brackets intersections? [Jin Hong] So

780
01:36:57,120 --> 01:37:03,440
we use edge data because the location of the cordon count, that's not really across the

781
01:37:03,440 --> 01:37:09,600
node. It's more likely between, for example, middle of the edges or something like that.

782
01:37:09,600 --> 01:37:14,400
But I think that's the same because Strava they record all the people who pass that

783
01:37:14,960 --> 01:37:21,440
point. So, we use edge information and correspond to the location of the cordon count.

784
01:37:23,760 --> 01:37:28,960
[Muir Houston] That's great. And just one more, which road networks are you working with, which is just

785

01:37:28,960 --> 01:37:34,800
the city of Glasgow I think is it Jin? [Jin Hong] Yes, that's the location that we use

786
01:37:34,800 --> 01:37:41,520
here. The whole data is a Glasgow one, so here, this area.

787
01:37:45,760 --> 01:37:49,600
The data you will get for this tutorial is the Glasgow area.

788

01:37:51,680 --> 01:37:57,840
[Muir Houston] Ok and just to remind everybody, as Jin has said, and I've posted the links to the 789

01:37:57,840 --> 01:38:05,120
data catalogue on the UBDC which gives information about gaining access to the data.

790
01:38:06,240 --> 01:38:14,320
And I've also put the link there for the free GIS software QGIS and the link to R which is

791
01:38:14,320 --> 01:38:24,320
also free and open-source code. So, I'd just like to thank everyone for attending and thank Jin for
his presentation and workshop. And the recording of this will be on the UBDC

793
01:38:32,640 --> 01:38:37,760
website, but we will need to make sure it's ok for accessibility given new regulations

794
01:38:37,760 --> 01:38:44,080
about accessibility of online content. So once again, thanks very much for coming and keep an

795

01:38:44,080 --> 01:38:48,480
eye on the UBDC. We've got another three of these data dives over the next month.

796
01:38:49,040 --> 01:38:54,960
So please, if you're interested, sign up and register for these and hopefully we'll see some

797
01:38:54,960 --> 01:39:02,760
of you at these other sessions. So once again, thanks everyone. [Jin Hong] Thank you very much, bye. [Muir Houston] Bye.

